2022 Lake Willoughby Water Quality Monitoring Results: Lay Monitoring Program and LaRosa Partnership Program

Mark Mitchell, Lake Monitoring and Community Outreach Coordinator
VT Department of Environmental Conservation, UVM Lake Champlain Sea Grant

Lay Monitoring Program (LMP) Lake Sampling Overview

- Weekly from Memorial Day to Labor Day (minimum of 8 samples for summer mean):
 - Basic Sampling: Measure Secchi disk transparency depth (clarity)
 - Supplemental Sampling: Collect water samples with hose at twice Secchi depth that are lab tested for total phosphorus (nutrient) concentration and chlorophyll-a (algae) concentration
 - Complete a lake sampling webform (and report cyanobacteria conditions)

https://dec.vermont.gov/watershed/lakes-ponds/monitor/lay-monitoring

Vermont Lake Score Card Lake Willoughby

https://dec.vermont.gov/watershed/lakes-ponds/data-maps/scorecard

Scores

Water Quality Data

Lake Information

Watershed:

Moderately Disturbed

WQ Standards: Meets Standards

Color Scoring System

- Good Conditions
- Fair Conditions
- Poor Conditions
- □ Insufficient Data

Learn How Lakes Are Scored

2022 Lake Willoughby Lay Monitoring Secchi Transparency Results

2022 Lake Willoughby Lay Monitoring Total Phosphorus and Chlorophyll-a Results

(Image courtesy of Kasco Marine)

https://kascomarine.com/blog/pond-lake-zone-identification/

Lake Zones

A typical lake has distinct zones of biological communities linked to the physical structure of the lake (Figure 10). The **littoral** zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants (**macrophytes**) to grow. Light levels of about 1% or less of surface values usually define this depth. The 1% light level also defines the **euphotic zone** of the lake, which is the layer from the surface down to the depth where light levels become too low for **photosynthesizers**. In most lakes, the sunlit euphotic zone occurs within the **epilimnion**.

http://waterontheweb.org/under/lakeecology/10 biological lakezones.html

4. Light

Plants need light to grow. Many lakes have deep water areas where rooted plants can't get enough light to survive. The maximum depth at which plants grow in a lake depends on the water clarity. In Vermont lakes, plants can generally be found growing out to water depths of 25 feet.

https://dec.vermont.gov/sites/dec/files/wsm/lakes/ans/docs/Lake%20and%20Pond%20Plants%20Booklet.pdf

From Lake Champlain Long-Term Monitoring Protocol:

During stratified conditions, two samples will be obtained, representing the epilimnion and hypolimnion, respectively https://dec.vermont.gov/sites/dec/files/wsm/docs/20200605%20LTM%205yr%20QAPP-Workplan.pdf

Sampling	Hose Sample	Hose Total	Surface Total	Hose Chlorophyll-a	Surface	Secchi Transparency	Secchi Transparency
Date	Depth (m)	Phosphorus (ug/l)	Phosphorus (ug/l)	(ug/l)	Chlorophyll (ug/L)	Without View Tube (m)	With View Tube (m)
6/6/2022		12.1	6.4	1.03	<0.50		
6/14/2022	15.2	8.6	6.9	1.53	1.32	7.3	7.6
6/24/2022	15.4	10.1	8.8	1.16	0.91	7.4	7.7
7/2/2022	18.6	9.4	8.5	1.61	1.29	8.3	9.3
7/10/2022	19.4	7.4	5.4	1.58	0.72	8.8	9.7
7/22/2022	21.8	12.7	7.2	1.22	0.81	8.9	10.9
8/1/2022	22.9	7.7	5	2.2	0.89	12.4	12.4
8/13/2022	21.6	8.9	6.8	1.9	1.36	9.4	10.8
8/24/2022	21.4	17.6	7.7	1.55	1.71	9	10.7
8/31/2022	22.4	6.2	5	1.77	1.7	7.5	11.2
Mean	19.9	10.1	6.8	1.56	1.19	8.8	10.0
A1 Criteria	Euphotic Zone	12	12	2.6	2.6	5	5

LAKE WILLOUGHBY

Annual Data (Station 1)

Annual Data (Station 1)

	Days Sampled	Secchi	Secchi View Tube	а	Summer TP	Spring TP		Days Sampled	Secchi	Secchi View Tube	Chloro- a	Summer TP	Spring TP
Year		(m)	(m)	(µg/l)	(µg/l)	(µg/l)	Year		(m)	(m)	(µg/l)	(µg/I)	(µg/l)
1980	13	8.1		1.9		4.0	2001	9	6.8		1.2	8.6	8
1981	11	8.4				4.0	2002	11	7.3		0.9	6.3	
1982						5.0	2003	10	7.3		1.3	9.5	5.0
1983	11	10.7				4.0	2004	15	7.8		1.1	8.3	5.7
1984						5.0	2005	12	7.5		1.4	10.1	
1985						6.0	2006	10	7.4		1.1	11.2	6.8
1986						6.0	2007	13	8.1		1.0	9.7	9.1
1987						6.0	2008	11	8.3		0.9	18.2	6.4
1990	10	5.8					2009	13	8.2		1.0	11.6	6.5
1991	12	7.6					2010	14	8.0		1.2	15.8	5.1
1992	13	8.2				5.0	2011	13	7.3		1.3	18.5	
1993	12	8.9		1.5	7.5		2012	13	8.8		1.1	12.1	5.3
1994	12	7.1					2013	11	8.2		1.5	15.8	
1995	12	7.8					2014	15	7.9		0.9	15.6	7.9
1996	15	8.9					2015	10	5.4		2.5	14.0	
1997	16	8.1		1.1	8.5	4.0	2016	15	8.9		1.0	8.3	
1998	18	7.8		1.0	6.9	3.7	2017	13	6.3		3.7	9.6	6.3
1999	10	8.4		1.6	6.5		2018	12	10.5		0.8	9.1	8.0
2000	10	7.7		1.0	6.3		2019	9	7.5		2.3	7.6	7.3
VT Stand	ard*	2.6		7.0	18.0		2020	14	9.6		2.5	7.7	7.
* VT Water	Quality Stan	dards Mutri	ent Criteria	for Class B2	Lakes > 20 ac	res.	2021	10		8.5	2.2	8.4	
							VT Stand	ard*	2.6		7.0	18.0	4

^{*} VT Water Quality Standards Nutrient Criteria for Class B2 Lakes > 20 acres.

LaRosa Partnership Program Tributary Sampling Overview

- Tributaries first sampled in 2021 ~biweekly (8X) from April/May to July/August + ~2 storm events
- 515882-Tr15 Roaring Brk: 30% algae cover at inlet 2 and since biology never lies, worth monitoring this tributary
- 523160-Tr17 Beavers: Includes runoff from farmstead and fields, high TP values in past
- 523161-Tr2Stoney Brk: Includes runoff from farmstead and fields, larger watershed, large delta formed at mouth of trib
- 523162-Tr4 Church: Very high CL readings, interesting for FPR as near site where new parking area and restoration projects are going in
- 523163-Tr5Mill Brk: Upsteam Orleans NRCD Sampling to see impact of farm restoration efforts, could be useful to get a downstream value
- 523164-Tr9SE Beach: Very high TP value, needs follow up

LPP Sample Parameters Overview: Total Phosphorus & Chloride

Total Phosphorus

- Sources
 - Developed land runoff, roads, driveways
 - Fertilizers lawns and agriculture
- Impacts
 - Feeds plants, algae and cyanobacteria
 - Aesthetics, Recreation, Aquatic Life Uses
- Vermont Water Quality Standards Nutrient Criteria for Aquatic Biota Use (+ Biological Criteria)
 - Not to be exceeded at low median monthly flow (baseflow) during June through October
 - 12 ug/L for small high gradient streams (SHG)
 - 15 ug/L for medium high gradient streams (MHG)
 - 27 ug/L for warm-water medium gradient streams and rivers (WWMG)

Total Chloride

- Sources
 - Road salt
 - Wastewater, water softeners
- Impacts
 - Affects chemical processes of biological organisms
 - Aquatic Life Use
- Vermont Water Quality Standards Chloride Criteria for Aquatic Biota Use
 - 860 mg/L maximum (acute)
 - 230 mg/L average (chronic)
 - Studies show chloride can impact organisms at lower concentrations

High-Resolution Land Cover Summary

2021-2022 Comparison of Tributary TP Results

Tributany	Minimun	n TP (ug/L)	Average	TP (ug/L)	Maximum TP (ug/L)		
Tributary	2022	2021	2022	2021	2022	2021	
Tr15 Roaring Brk	10.7	11.6	38.4	48	145	255	
Tr17 Beavers	11.5	11.6	36.7	26.7	162	84.6	
Tr2Stoney Brk	6.5	7.2	48.4	44.7	297	248	
Tr4 Church	9.9	6.1	53.7	42	316	237	
Tr5Mill Brk	8.5	7.4	60.3	37.5	383	180	
Tr9SE Beach	7.1	6.1	12	9.5	30.8	16.2	

Date	Tr15 Roaring Brk	Tr17 Beavers	Tr2Stoney Brk	Tr4 Church	Tr5Mill Brk	Tr9SE Beach
21-22 Ave Base flow	19.6	17.8	11.9	13.0	11.7	8.9
21-22 Ave freshet	127.7	77.6	158.8	167.3	159.1	16.2
21-22 Ave overall	43.7	31.1	46.4	47.3	46.4	10.6

Tributary	Minimum Chl	oride (mg/L)	Average Ch	nloride (mg/L)	Maximum Chloride (mg/L)		
Tributary	2022	2021	2022	2021	2022	2021	
Tr15 Roaring Brk	N/A	N/A	N/A	N/A	N/A	N/A	
Tr17 Beavers	N/A	N/A	N/A	N/A	N/A	N/A	
Tr2Stoney Brk	<2.0	<2.0	<2.0		<2.0	2.0	
Tr4 Church	2.2	2.0	3.7	3.4	4.8	4.4	
Tr5Mill Brk	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Tr9SE Beach	92.4	42.4	119.3	78.2	153.0	101.0	

USGS Barton River Flow With Sample Dates

2022 Monitoring Summary & 2023 Next Steps

- Lay Monitoring Program (LMP)
 - 2022 Summary: Hose samples have higher total phosphorus concentrations than surface samples, but surface samples better reflect Secchi depth for class A1 lake
 - 2023 Next Steps: LMP volunteer collects biweekly surface samples and optional deep-water (20 m) samples; LMP staff collects vertical profile data during annual visit; add caffeine testing as human wastewater indicator (i.e. septic systems)
- LaRosa Partnership Program (LPP)
 - 2022 Summary: High TP during Freshet at all sites except 523164-Tr9SE Beach,
 where there is high chloride
 - 2023 Next Steps: LPP volunteers continue collecting biweekly samples through August at all sites and look upstream for sources